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more easily support multiple tutorial strategies and the develoi. ment of customized, globally coherent
curriculum plans and lesson plans. Both architectures explicitly represent tutorial strategies apart from
domain knowledge to simplify the construction of tutors for new domains. However, the blackboard
architecture has the additional advantage that it facilitates the separation of knowledge about planning
from both domain knowledge and tutorial strategies.

These claims are supported by considering an architectural formalization of each architecture and
the way in which each architecture's key components facilitate or hamper the dynamic planning of
instruction. The relationship between this ability to plan instruction dynamically and to generate
effective and flexible instruction is also supported, justifying the utility of this kind of comparison. To
ground these discussions, two examples of each architecture are provided: GUIDON and MENO-

TUTOR exemplify discourse planners implemented as discourse management networks while IDE-
INTERPRETER and the BLACKBOARD INSTRUCTIONAL PLANNER exemplify planners
implemented in the blackboard architecture. Application of each architecture to control an intelligent
tutoring system to teach LISP is also considered to further illustrate differences in capability that result
from choice of architecture.
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Blackboard Architectures and Discourse Management Networks

William R. Murray

Artificial Intelligence Center
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1205 Coleman Avenue, Box 580
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Abstract

An intelligent tutoring system must have some control mechanism for deciding what instructional

action to perform next. Traditional CAI systems have inflexible control mechanisms that procedurally
encode tutorial strategies and prevent them from being readily extended to handle new domains or
tutorial strategies. Two alternative architectures proposed recently to address these problems are

discourse management networks and blackboards. This paper compares these two architectures and
argues that an intelligent tutoring system controlled by a blackboard architecture can deliver
significantly more effective and flexible instruction than one controlled by a discourse management

network.

The key components of each architecture are compared and related to the functionality that results.

The key components of the blackboard architecture are a global database, independent knowledge

sources, and agenda control. In contrast, discourse management networks are much simpler, resembling
finite state machines or augmented transition networks. Discourse management networks are

characterized by explicit tutorial states and a fixed control mechanism that handles transitions between
states. They are well-suited for supporting opportunistic tutoring strategies, but they must be coupled
with other control mechanisms to support lesson planning, discourse that requires dialog planning, and
mixed-initiative interaction where student actions can invalidate assumptions underlying the current

discourse plan. Blackboard architectures provide more flexibility in handling discourse situations and
for the integration of lesson planning and discourse planning. Furthermore, blackboard architectures
more easily support multiple tutorial strategies and the development of customized, globally coherent

curriculum plans and lesson plans. Both architectures explicitly represent tutorial strategies apart from

domain knowledge to simplify the construction of tutors for new domains. However, the blackboard
architecture has the additional advantage that it facilitates the separation of knowledge about planning
from both domain knowledge and tutorial strategies.

These claims are supported by considering an architectural formalization of each architecture and

the way in which each architecture's key components facilitate or hamper the dynamic planning of
instruction. The relationship between this ability to plan instruction dynamically and to generate --

effective and flexible instruction is also supported, justifying the utility of this kind of comparison. To

ground these discussions, two examples of each architecture are provided: GUIDON and MENO-
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TUTOR exemplify discourse planners implemented as discourse management networks while IDE-
INTERPRETER and the BLACKBOARD INSTRUCTIONAL PLANNER exemplify planners
implemented in the blackboard architecture. Application of each architecture to control an intelligent
tutoring system to teach LISP is also considered to further illustrate differences in capability that result
from choice of architecture.
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1. Introduction
The research discussed in this paper addresses the problem of control for intelligent tutoring

systems. At any point during instruction a tutoring system must select from many possible instructional
actions. For example, topics can be introduced, reviewed, motivated, summarized, explained in depth,
related to earlier topics, etc. Similarly, student knowledge can be assessed by true/false or multiple
choice tests, direct questioning, self-assessment, and many other means. The problem of control is to
select the most effective action, given the current lesson objectives, student model, tutorial strategy,
subject matter, and resources available.

An important decision in designing an intelligent tutoring system is the choice of architecture for
this control mechanism. Traditional CAI systems have inflexible control mechanisms that procedurally
encode tutorial strategies, and which prevent them from being readily extended to handle new domains
or tutorial strategies. Two alternatives proposed recently to address these problems are discourse
management networks and blackboard architectures. This paper compares the advantages and
disadvantages of using these two architectures for control in intelligent tutoring systems. Based on this
comparison, we argue that blackboards address important limitations of discourse management networks
that limit their ability to deliver customized, globally coherent, planned instruction, and to support more
flexible mixed-initiative instruction.

The framework for comparison is the ability of each architecture to support the dynamic planning
of instruction. Dynamic instructional planning is a planner-based approach to control for intelligent
tutoring systems in which appropriate plan generation' and revision occur during the tutorial session and
in response to the changing tutorial situation. A dynamic instructional planner reasons about alternative
lesson objectives, and alternative instructional plans to realize the tutorial strategies it selects. We argue
that such planning is necessary to build effective, robust, and flexible tutoring systems and that
blackboard architectures provide better support for this planning than discourse management networks.
Before comparing the two architectures, we first justify the relevance and importance of dynamic
instructional planning to intelligent tutoring systems.

1.1. Importance of Dynamic Instructional Planning in Intelligent Tutoring Systems
Why should tutoring systems incorporate dynamic instructional planning? Two points must be

supported here: first, that a tutoring system should have a plan; and second, that it should be able to
plan. It should have a plan to properly manage its time and generate globally coherent instruction.
Proper time management prevents spending too much time on relatively unimportant topics or packing
too many topics or exercises into one lesson. Global coherence means that topics are logically
connected to support instructional objectives and that topics are sequenced and presented in a manner
sensitive to the student's perceived knowledge, the tutor's instructional objectives, the student's interest

IFor the purposes of this paper we allow plan selection to be considered a trivial form of plan generation, otherwise
discourse management networks would not support dynamic instructional plaming merely by their inability to assemble a
plan during instruction.



and motivation, and the time available for lessons. Transitions between topics are smooth and the tutor
is consistent; that is, it does not contradict previous or future instruction. One sign of incoherent
instruction is recurring student confusion about the tutor and its intentions, resulting in distractions from
the subject matter being taught.

Another advantage of having a plan is the ability to introduce material in a layered fashion, first
providing an overview of the material and lesson plan, and then introducing successive layers of detail
that build on and refine earlier material. A plan also allows the tutor to recognize opportunities to
motivate and lead into future instruction in response to unexpected student questions, or to defer
answering the questions since they will be addressed later in the lesson. The tutor can use a plan to
select a sequence of problem-solving cases that cover a set of topics, and to focus its conversation on the
central topics for each case, deferring or abbreviating discussion of other topics best addressed in
subsequent cases. Finally, a plan assists in explaining and motivating current instruction based on its
relationship to future instruction.

One alternative to dynamic instructional planning is for the tutor simply to interpret a highly
detailed plan provided by a human curriculum author; this approach is used in traditional computer-
assisted instruction (CAI). Although theoretically the plan could provide for any eventuality that might
arise, practically the combinatorics of different student responses and tutorial states require that student
initiative be curtailed, fine-grained student modeling avoided, and a significant amount of time spent
preparing lesson plans. One goal of intelligent tutoring systems is to explicitly represent the tutorial
strategies that ate encoded procedurally in such a system, allowing for more rapid development of tutors
for new instructional domains, and experimentation with alternate strategies. 2 By providing intelligent
tutoring systems with a planning capability, their reliance on human-generated plans is reduced while
their ability to generate the high-quality expository instruction of well-crafted CAI systems is increased.

A tutor that can plan is also better able to handle a mixed-initiative dialog than a tutor that cannot
plan. Replanning can be used to handle topic transitions brought about by student questions and to
revise lesson plans to omit or cover topics to satisfy student requests. Again, the combinatorics of the
different possible student requests, questions, and tutorial states argue for representing the knowledge
for handling student initiative in planning knowledge rather than as different plan contigencies in a pre-
stored plan. This planning knowledge allows the tutor to plan topic transitions, to replan in response to
the amount of time remaining in the lesson, and to decide how to return to the current topic or whether
to abandon it altogether.

Planning knowledge is used not only to customize the lesson plan in response to student requests
during the lesson, but also before the lesson begins. A tutor that can plan can generate an initial lesson

21ntelligent tutoring systems also differ from CAI systems by their emphasis on sophisticated student modeling, the
tailoring of imtruction to the student model, and the ability to solve problems, model expertise, and azuwer questiom about
the domain they are teaching.
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plan customized to the student's interests, assessed capabilities, and background. The lesson plan can be
revised as the tutor's student model changes or in response to student requests. Instead of the tutor
assuming a fixed set of instructional objectives for all students, the student can request instruction on
particular areas of a subject. As before, it is impractical to anticipate the number of different student
interests, objectives, and backgrounds in teaching complex subjects. It is more economical to represent
lesson planning knowledge than to provide lesson plans for all the different possible combinations. The
representation is more economical in the sense that the same knowledge is represented explicitly in a
concise form and not replicated implicitly in the branches of a single highly conditionalized lesson plan,
or as a very large number of lesson plans unique to different situations.

These arguments for the tutor being able to plan rest on a subtle point that is worth reemphasizing.
Simple plan-fotlowing tutors (CAI) can always replicate the behavior of a dynamic instructional planner
for any particular situation. However, the dynamic instructional planner is better able to handle the
combinatorial explosion of different tutorial situations when mixed-initiative instruction is allowed, and
where lesson plans are tailored to different student models and to varying amounts of time for each
lesson. The CAI system limits mixed-initiative dialog and lesson customization, and omits or simplifies
the student model to reduce the number of different tutorial situations. The dynamic instructional
planner imposes fewer limitations since it can apply its planning knowledge to the different tutorial
situations that arise.

The economic representation of planning knowledge in a dynamic instructional planner also
contributes to its greater ease of use than that of a CAI system. The CA system procedurally encodes
planning knowledge and implicit assumptions about the tutorial state at each branch of its pre-stored
instructional plan. The planning knowledge in a dynamic instructional planner makes fewer
assumptions about the tutorial situation and can thus be more readily applied in the construction of new
tutoring systems.

1.2. Types of Instructional Planning
We may distinguish three levels of instructional planning:

* Curriculum planning - planning an extended sequence of lessons for a subject.

* Lesson planning - determining the subject matter to present in a single lesson, and the order
of presentation.

* Discourse planning - planning communicative actions between the tutor and student within
a lesson.

These levels cannot in practice be so cleanly separated and frequently discourse planning and lesson
planning are intertwined, as are lesson planning and curriculum planning. Typically, a human
instructor's lesson plan will include not only a sequence of topics but also some common, discourse
procedures such as collecting homework or having students solve and explain problems on the board.
This three-level distinction is useful here since discourse management networks support primarily
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discourse planning3 while the blackboard architecture supports all three kinds.

The remainder of this paper compares discourse management networks and blackboards with
respect to their support for dynamic instructional planning. Section 2 formalizes the discourse
management network architecture, provides two examples, and then discusses this architecture's support
for dynamic instructional planning. Similarly, Section 3 formalizes the blackboard architecture,
provides two examples, and then discusses support for dynamic instructional planning. Next, a specific
application, control of a LISP tutor, is considered in Section 4 to illustrate the advantages of the
blackboard architecture. The last section summarizes these arguments.

2. Discourse Management Networks
Discourse management is the selection by the tutor of the next discourse action or intended

sequence of actions. In this architecture, the tutor does not reason about the results of discourse actions
or future tutorial situations; the only planning performed is plan selection or skeletal planning.
However, planning is not a prerequisite for flexible behavior [10] and tutors built with this architecture
allow sophisticated control of tutorial dialogs.

A discourse management network (DMN) is a kind of procedural network similar to an augmented
transition network. Nodes represent tutorial procedures or actions corresponding to tutorial states. Arcs
represent state transitions. The tutor is in one state at any time. The state determines what actions are
performed. After performing the actions or procedures, control follows one of the arcs leaving from the
state. The choice of arc, if there is more than one, depends on the predicates on the arcs.

2.1. Architectural Formalization
Figure 2-1 represents the key features of the discourse management network architecture. Circles

represent tutorial states named SO... S n and Sdefault. Arrows represent possible transitions to other states,
not all of which are shown. Assume the tutor is originally in state So. Then A0 represents the actions
that will be performed in state So. The heavy line represents a default transition to the state Sdefault.
Other lines from So represent other possible transitions that can be taken. Each predicate PI...Pn is
considered in turn and the first true predicate causes control to transfer to that state. If no predicate
P... Pn is true then the default transition is taken. The discourse management network has no memory
other than the current state and the registers RI...Rm. These registers can be set to scalar or symbolic
values by any of the actions and accessed in any of the predicates. Actions can only set registers or
perform communicative actions (e.g., give a test). Actions cannot change control in any way other than
that described above. For example, an action cannot change the current state or the arcs emanating from

a state.

3Plaming in the sense of choosing a course of action, not in the sense of masoning about the results of actions and
projecting future discourse situations.
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Figure 2-l: The discourse management network architecture

As formalized here, discourse management networks are a kind of finite state machine with
registers used to reduce the number of states. Usually discourse management networks are coupled with
other control mechanisms (e.g., an agenda) and an external memory to provide a topic selection -
mechanism. Two examples of discourse management networks are discussed below, along with

extensions they make to the abstract model above.

2.2. Two Exemplars
MENO-TUTOR (12] uses a discourse management network to control a Socratic question and

answer dialog with a student that alternately probes the student's knowledge and refines his knowledge
by teaching new information or correcting misconceptions. Figure 2-2 [13] shows the state transition
diagram of MENO-TUTOR. Numbered states indicate a possible sequence of states that might occur in
a dialog. It differs from the abstract model above in its use of hierarchical abstraction: tutorial states at
the bottom of the diagram are refinements of the tutorial states above them. In this diagram only
possible transitions from more abstract to less abstract states are shown; default transitions are not
shown. The actions of a particular state result in the generation of a single utterance by a surface natural
language generator.

MENO-TUTOR also differs from the idealized model in its use of meta-rules to represent state
transitions other than to default states. Rather than explicitly represent these arcs and their predicates,
the meta-rules operate as demons that can override default transitions. This movement to a new state
from a specified prior state happens only when a meta-rule's trigger condition is true. Since the meta-
rule can be replaced by arcs to the new state with predicates using the meta-rule's trigger condition, the
meta-rules provide only a more compact representation but no added functionality compared to the
abstract model above.

MENO-TUTOR was reverse-engineered to produce Socratic question and answer dialogs similar to
those obtained from human protocols. One such dialog that MENO-TUTOR could produce, if coupled
to a surface language generator, is shown below (these examples are from [13]). The Pascal program
being referred to is shown in Figure 2-3.

Tutor. Do you know that GRADES, in line 9, is a control variable for the WHILE loop?

_!1
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Figure 2-2: MENO-TLTOR's Discourse Management Network

Student: Yes

Tutor: Does that mean that GRADES should be

(a) Initiated before the loop?
(b) Added into SUM within the loop?
(c) Modified within the loop?
(d) Both (a) and (c)

Student: C

Tutor You seem to understand about the control variable of the WHILE loop. Now let's talk about
some other command statements.

What do you think READ (GRADES) in line 8 does with the value of GRADES?
(a) Reads all values of GRADES at one time.
(b) Reads in a single value of GRADES.
(c) Assigns several new input values to GRADES.

Student: A

Tutor Then do you think that GRADES := GRADES + I updates the next of those values?

Student: Yes

Tutor: There is your misconception. Adding one to a variable is a common way to step through a
range of values. But it cannot apply here because your READ instruction in line 8 retrieves only a
single value. You should replace line 13 with a second call to READ (GRADES). -
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1 PROGRAM LESSON1 (INPUT, OUTPUT);
2 VAR
3 SUM, GRADES, STUDENTS: INTEGER;
4 IMDLN: REAL;
5 BNGIN
6 SUM:0;
7 STUDENTS::0;
8 READ (GRADS);
9 WHILE GRADES>0 DO
10 BEGIN
11 SUM:=8UM + GRADES;
12 STUDENTS : STUDENTS+1;
13 GRADES:=GRADES+l;

should be READ(GRADES); -I
14 ZiND;

15 MDIAN: -SUM/STUDENTS;
16 WRITELN
17 ('TE DMDIAN GRADE IS', MEDIAN:8:3)
18 END -

Figure 2-3: Student program in MENO-TUTOR dialog

GUIDON [21 extends the utility of the discourse management network formalism by introducing

quite sophisticated tutorial actions. Instead of simple actions, such as suggesting a new topic, a packet

of tutorial rules (t-niles) can be invoked. Such a collection of t-rules is called a discourse procedure, and

t-rules themselves can call other discourse procedures. The result is that most of the selection of

di course actions occurs as a result of the operation of the t-rules within a state, and the discourse

management structure is more of a convenient means of organizing discourse procedures, rather than the

primary control resulting in the selection of discourse actions.

The domain of discourse for which GUIDON was developed is a MYCIN consultation. A medical

student using GUIDON attempts to learn or refine his understanding of the knowledge represented by
MYCIN's diagnostic rules. Discourse topics include MYCIN rules, goals, clinical data, and student

hypotheses. Discourse procedures are organized around these topics as shown in Figure 2-4 ( [31, page

59). Selection of the next discourse procedure is also performed within each state, thus the predicates on

the arcs are implicit in the t-rmles that determine the next discourse procedure to select.

The point here is not that GUIDON's enhancements alter the DMN architecture or that GUIDON

does not handle discourse in a sophisticated way (since it does), but that GUIDON's power comes from

its use of these discourse procedures and t-rules and not from the underlying discourse network

architecture. The discourse management network architecture - the states, arcs, and predicates - is not

where most of the decision-making is performed regarding what discourse action to take, rather this is

performed by the numerous t-rules in each state.
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2.3. Support ror Dynamic Instructional Planning
The main feature that discourse management networks lack to support dynamic instructional

planning is an explicit plan representation that can be generated and interpreted during instruction. The
lack of such a repnsentation hampers:

a Incremental planning - since there is no explicit representation of partially specified
subplans or operators, or representation of constraints on those parts of the plan that have
not been elaborated to the level of primitives.

* Plan repair or improvement by revising existing plans - since there is no plan data structure
that can be modified and then subsequently interpreted.

* Gracefully suspending, resuming, or abandoning plans - since suspension and resumption
of instructional plans requires more than placing a plan on a stack and then popping it off
later. Instead a coherent line of discourse must be maintained in suspending or abandoning
a plan and moving to an entirely new or resumed plan. Topic transitions may need to be
planned or an explanation generated for why the current line of instruction is now changing.

4
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Sophisticated dialog management in GUIDON and MENO-TUTOR is still maintained, essentially
by dynamically selecting from pre-stored discourse plans.4 This dynamic selection allows reactive
discourse that responds to student questions and requests, but still does not provide the flexibility and
global coherence that dynamic instructional planning could provide. Two examples from GUIDON will
illustrate limitations that can be addressed by dynamic instructional planning. First, note that
GUIDON's discussions can be verbose and lacking global direction since GUIDON does no planning
before the dialog begins. Instead, GUIDON considers only one level of MYCIN's AND-OR goal tree at
any time when controlling its dialog. Clancey [3] discusses two deficiencies that became apparent when
GUIDON was applied to the nonmedical domain of SACON (structural analysis):

First, better overviews are required. A SACON dialogue is tedious because GUIDON methodically
guides the dialogue in a depth-first way. only motivating the discussion one step at a time. To convey a
global sense of purpose, the program must reason about the relation between subgoals (e.g., distinguish
between definitions and hierarchical subtype) and summarize subtrees.

Second, the constraint on time for the session prevents treating each "context" (e.g., culture, loading,
organism) with equal emphasis; some contexts must be omitted or mentioned in passing. While
GUIDON has a number of methods for reducing the number of rules that are mentioned and has
methods for mentioning them economically, it never looks down into the solution, beyond one level of
the tree, to decide what topics to focus on. ( [3), pages 230 - 231)

GUIDON is also limited in its ability to tolerate student interruption since it lacks dynamic instructional
planning. Although students can interrupt, students cannot receive new case data during the interruption
since the current (suspended) discourse procedure or tutorial rule may need to be abandoned or modified

S to account for the student's new knowledge. GUIDON cannot do this and so attempts to avoid
situations where this problem might arise:

Exchange of initiative in the tutorial involves complex interactions with the knowledge models and
discourse procedures, given that student interruptions can disrupt a plan at any time. We minimize
these interactions in GUIDON by taking the initiative for just short sequences; long lectures or
explanations are more prone to student interruptions that overturn the teacher's plans. When it makes a
difference, as during hypothesis evaluation, the program preserves the current dialogue context, and
hence the logic behind its initiative, by not giving new case data during a student interruption. In a
more flexible tutor, modeling and tutoring would occur in tandem. Specifically, in presentations of any
considerable length, like hypothesis evaluation, it is desirable for the tutor to periodically stop, listen,
and reevaluate its present course. ( (3], pages 89 - 90)

It is precisely this ability to replan dynamically that would allow dynamic instructional planning to
provide greater flexibility in handling student interrupts than that provided by GUIDON.

3. The Blackboard Architecture
LThis section considers the blackboard architecture: its architectural formalization, two examples of

planners implemented in that architecture, and then its support for dynamic instructional planning.

*These pre-stored discourse plans are .,presene in GUIDON as discourse proedures. In MENO-TUMOR they at
sequences of states connected by default transitions.

pI
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3.1. Architectural Formalization
The distinguishing features of a blackboard architecture are:
1. Hierarchically structured global database - Solution elements to the problem being solved

are posted here. The hierarchical structure of the blackboard facilitates problem
abstraction and the efficient triggering of knowledge sources.

2. Independent knowledge sources - These are rules triggered by changes to the blackboard
whose actions contribute to an evolving solution by adding or modifying solution elements
on the blackboard. Knowledge sources communicate only by adding or changing the
contents of the blackboard.

3. Agenda control - An agenda of possible actions to perform is maintained. Activation
records created by the triggering of knowledge sources are added to the agenda. A
scheduler selects the next action to execute from the agenda.

Figure 3-1 depicts the standard blackboard interpretation cycle. Knowledge sources are triggered by
changes to the blackboard. This causes new activation records to be added to the agenda, indicating
possible actions corresponding to the knowledge sources. The scheduler selects the next action to
perform. Its execution results in additional changes to the blackboard, possibly triggering new
knowledge sources.

Execution Activation Recovrd chdl Ato

Figure 3-1: Blackboard Interpretation Cycle

3.2. Two Exemplars
The BLACKBOARD INSTRUCTIONAL PLANNER [61 (abbreviated here as BB-IP) best

illustrates the direct application of a blackboard architecture to construct a dynamic instructional
planner. Conceptually, the problem being solved - a lesson plan5 being incrementally constructed - is
represented on a domain blackboard. A second blackboard, called the control blackboard, represents
decisions about how to construct and modify this plan. The lesson plan itself represents decisions about
what instructional actions to take now and in the future. These blackboards are shown in Figure 3-2.
There are three levels in the domain blackboard. The highest level represents a partial ordering of
lesson objectives, concepts, or skills to teach. The second level represents tutorial discourse plans.
Each plan consists of one or more steps that are in turn represented on the third level. Each step

VPan of the lesson plan is a current discoure plan.



influences the scheduler to select instructional actions from one particular category of instructional
actions. For example, an instructional plan could first bias the scheduler to select instructional actions to

motivate a topic, then actions to provide an overview of the topic, then actions to present the topic in
detail, and finally actions to assess the student's understanding of the actions. There are several types of

actions to present or assess a topic, including presentation of graphics or specific kinds of tests such as a
true-false test. The categories of instructional actions are shown in Figure 3-3. Plan steps can direct the

scheduler to favor actions from any one of these categories. The next step in a plan is selected once the
current step's goal is satisfied. The goal might be that all such actions on the agenda have been

executed or that the tutor's belief that the student is likely to know a lesson objective has exceeded some

threshold. The control blackboard sets up default preferences to favor particular kinds of tutorial
discourse plans (e.g., those that always assess a student's knowledge of a topic before discussing it).

These initial preferences are altered during the tutorial session by the action of knowledge sources that
monitor time remaining, the efficiency of instructional plans, student questions, and student requests.

Lee~n Knowedg SOwee

Objectives Events

Figure 3-2: Domain and Control Blackboards of the BLACKBOARD INSTRUCTIONAL PLANNERKnowldge n

,F..1u ToJ sA~L..1sCOsul JI .A .1 tEi~41 JC TIIM..A.Ms
. .t.a~ To"-STMI1GY -" -eELBNSTS40 =T- "
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Figure 3.3: Categories of instructional actions in the BLACKBOARD INSTRUCTIONAL PLANNER

IDE-INTERPRETER [81 is a second example of an instructional planner implemented in a +

blackboard architecture. The planner is not built over a general-purpose blackboard system, as BB-IP is

LA



12

built over BB 1, but the planner's architecture contains the three key components of the blackboard
architecture. There is an explicit representation of the lesson plan at various levels of abstraction using a
tree data structure (first key component). Changes to the tree trigger rules that correspond to the
knowledge sources of the blackboard architecture (second key component). The actions of these
knowledge sources are to further refine parts of the lesson plan. Each rule is encapsulated in a record as
a possible task to be performed on an agenda (third key component - agenda control). A scheduler,
consisting of a collection of heuristics, selects the next goal expansion task. Terminal nodes in the tree
correspond to instructional units that are directly executable self-contained instructional procedures.
Typically these are associated with the presentation or assessment of a particular topic. Thus this
planner emphasizes lesson planning over discourse planning since most specific discourse actions are
procedurally encoded in the instructional units and not reasoned about by IDE-INTERPRETER. BB-IP
differs in its equal emphasis on both lesson and discourse planning, as illustrated by its reasoning about
more fine-grained discourse actions along with actions that refine or sequence lesson objectives.

3.3. Support for Dynamic Instructional Planning
Each of the three key architectural features of the blackboard architecture supports dynamic

instructional planning. The hierarchically structured global database supports an explicit hierarchically
structured plan representation. This in turn supports the following functionality that facilitates dynamic
instructional planning:

" Planning at multiple levels of abstraction - this plan abstraction reduces the search space for
an effective instructional plan and facilitates the separation of those aspects of the
instructional plan related to curriculum planning, lesson planning, and discourse planning.

*Incremental planning - the explicit plan representation allows the representation of those

parts of the plan that have not yet been refined and any constraints on partially refined
plans. This allows the planner to avoid premature commitment while retaining constraints
that ensure plan consistency.

" Plan repair and plan improvement - the current plan need not be discarded entirely if some
part of it fails, instead it can be patched to retain the remainder of the plan. If the plan is not
failing but an unexpected opportunity to improve it arises - perhaps a student question
leading into planned instruction - then the plan can also be revised accordingly. Without
the ability to modify only parts of the plan either the entire plan must be discarded and
another selected, or the curriculum designer must attempt to anticipate all possible plan
failures or opportunities for improvement - and again the combinatorics argue against the
practicality of this approach.

* Plan justifications - justifications for plan steps can be recorded and used to explain to the
student, or to an instructional designer debugging a tutorial strategy, the reasons for the
current instructional actions. These plan step justifications can also be used in replanning.
Although plan justifications can be used for explanation in systems that only select but do
not assemble, patch, or revise plans, such as GUIDON, those systems cannot use the
justifications to replan.

The second key component of the blackboard architecture is the use of independent knowledge
sources. This architectural feature supports dynamic planning by separating diverse kinds of knowledge
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while allowing their cooperation during the problem solving process, in this case the construction of an
instructional plan. The following kinds of knowledge are easily separated with this scheme:

e Possible instructional actions - new instructional actions, such as giving a new kind of test
or explanation, can be added (or actions can be deleted) without requiring modification of
existing tutorial strategies.

e Tutorial strategies - new tutorial strategies can be added without modification of the
representation of instructional actions.

* Planning strategies - different approaches to planning can be added without affecting the
library of tutorial strategies or instructional actions.

Although systems based on discourse management networks separate out the fust two kinds of
knowledge, and thus improve on CAI where both kinds of knowledge are procedurally encoded, they do
not separate out the third kind of knowledge. The second kind of knowledge can in turn be separated
into different methods for curriculum planning, lesson planning (topic/skill selection and sequencing),
strategic discourse planning (for preplanned presentation and assessement of topics), and reactive
discourse planning (fo" handling student questions and requests).

Another disadvantage of DMNs is the lack of independence of knowledge sources when used in
that architecture. With the extensions that Clancey has made to the basic DMN architecture, the t-rules
and discourse procedures act as knowledge sources that select discourse actions, select future DMN
states, and save values in registers. Such knowledge sources are not independent since they must
communicate through registers, and there must be protocols for which knowledge sources set which
registers and which read them. For example, some of GUIDON's t-rules set registers indicating the

value of discussing particular MYCIN domain rules. Other t-rules responsible for presenting the rules

must access these values. Clancey notes that:

Interactions ;f this kind are rare in GUIDON, but they illustrate the general problem of control when
the decision about what to do is separated from its execution. The program must maintain a record of
possible and/or intended actions, so that after all possibilities have been weighed, the program can
return to the best plan and follow it. ... For the moment, we must hand-craft interactions between t-rule
packets. ( [31, page 80)

The blackboard architecture facilitates solutions to these problems: the agenda maintains a record of
possible actions, the global database records an explicit plan representation of intended actions, and
knowledge sources are independent and communicate entirely through the blackboard.

The third key component of the blackboard architecture, agenda control, supports dynamic
instructional planning by allowing the best instructional action (either an interactive action involving the
student or further planning by the tutor) to be selected at any time with respect to possibly conflicting
multiple goals. Agenda control supports global planning by allowing multiple goals to be considered
simultaneously. It also allows actions to be favored that achieve more than one goal at a time. Although
similar results can be obtained in theory by procedurally encoding heuristics that take into account all
current goals and available actions, in practice this flexibility is difficult to obtain for complex domains.
This difficulty arises from the unmanageable number of different possible sets of goals and actions that
must be anticipated.
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4. Scenario: Controlling a Programming Language Tutor
To illustrate the additional support that the blackboard architecture provides for dynamic

instructional planning relative to discourse management networks, we will consider a hypothetical

scenerio. This scenario provides examples of how dynamic instructional planning in a blackboard

architecture provides more flexible and effective instruction than a system based on discourse

management networks, that cannot so plan. We consider the operation of the tutor first when controlled

by a dynamic instructional planner implemented in a blackboard architecture and then by a discourse

management network. To consider a familiar domain, the scenario assumes that the tutor is teaching

LISP in a self-paced course. The student is called S and the tutor T below.

4.1. Scenario 1: Dynamic Instructional Planning in the Blackboard Architecture

T greets S and explains that the first order of business is to draw up a curriculum plan for the term

based on the student's interests and the requirements set by the computer science department. T

provides S with a brief questionnaire about his background and interests. S knows Pascal and is

interested in learning LISP for use in an Al course he is taking concurrently. He is planning on doing a

term project in that class in LISP, and is less interested in the theoretical underpinnings of LISP (e.g.,
the lambda calculus) than in using LISP for Al programming applications. T draws up a lesson plan

given the inferred cognitive stereotype of the student (novice with only one Pascal course), the number

of lessons expected in the course (20 lessons, each lasting about an hour to an hour and a half), and the

student's interests. A different curriculum plan is drawn up for each student. Another student in a

programming languages course might receive a much smaller number of lessons providing only a brief

introduction to LISP and concentrating on those unique features that distinguish it from other languages.

A typical lesson between T and S might appear as follows. T briefly reviews material covered in

the last lesson and then explains today's lesson plan, which covers mapping functions and iteration. T

proceeds to explain the concepts involved, relating them to analogous concepts in Pascal. T points out

both the differences and similarities between iteration in Pascal and in LISP. T proceeds to explain DO
loops, but is interrupted by a request by S to explore. (The exploration mode of the tutor allows S to

perform experiments of his own in the LISP environment.) T suspends its discourse plan to elaborate
further on DO and lets S interact with the interpreter and editor. T monitors S during this time. S writes

a simple DO to print out integers and their squares. Next S writes another DO but this one loops forever

since the exit test never becomes true. T's program analyzer, which has been checking S's DO loops for

well-formedness, detects this error. T breaks the infinite loop and explains the problem. The student

edits his DO, retries it, is satisfied, tries some other examples, and finally exits the exploratory mode. T

has also monitored the time involved and would have reacquired the initiative if too much time had been - q

spent exploring or too little progress appeared to result from the exploration. When T reacquires the

initiative, it is satisfied that S has learned those aspects of DO that it was about to explain. Both the

further explanation of DO and an assessment of the student's ability to use DO are now obviated by the

student's demonstrated capability during the exploratory session. T replans to omit these parts of the

lesson and then proceeds to discuss mapping constructs.
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We pick up the scenario a few lessons later. Before moving onto more advanced topics, such as
object-oriented programming in LISP, T switches to a case-method style of instruction for this particular
lesson. Each programming exercise tests some of the skills that S should have acquired and retained. S
has only minor problems with the first two exercises but his solution of the third exercise has multiple
bugs. (T uses a program analyzer such as TALUS [5) that can detect multiple bugs in student programs;
a PROUST-like [41 analyzer is used when T teaches Pascal.) T plans which bugs to address and in what
order. It switches to a Socratic question and answer discourse strategy to track down and remediate
likely misconceptions about iteration indicated by the most important program bugs. T focuses on those
bugs related to iteration, and quickly explains and repairs the more simple remaining bugs for the
student. (T could let S repair the bugs but decides that the time is better spent addressing underlying
misconceptions.) T switches to expository instruction to review those aspects of iteration the student
appeared to have trouble with and then resumes case-method instruction to assess the student's
capabilities in other areas covered.

At the end of this assessment and review of basic skills, T explains the student's progress so far
and what remains to be learned. The remaining curriculum is reviewed and the student is reminded that
it can be revised (within limits) to accommodate his specific interests. The student expresses an interest
in covering one of the optional topics (pattern matching in LISP) since he has decided to build a theorem
prover for his term project in the AI class he is taking concurrently. Since T cannot delete or compress
any of the remaining lessons because they cover material mandated by the computer science depamnent
it asks S if it is OK to add a short lesson on this. S agrees, so T inserts into the curriculum plan a lesson
on using LISP to write simple pattern matchers. S is now satisfied with the overall curriculum plan, 4
requesting only that more time be spent on working through examples in the future.

Still later in the lesson. T is explaining object-oriented programming by focussing on an
application that is used as a running example throughout the discussion. Much less expository
instruction is given since more time is spent motivating concepts through examples, and giving the
student exercises to solve with the tutor's assistance. At times, S switches to exploratory mode,
examines the case library, ,nd requests that T solve one of the cases.6 When this happens, T tutors
opportunistically - it explains new material that an tes in the case or material that it believes the student
is weak on. It also replans to omit any similar cases that it had intended to cover, unless it appears - _
necessary based on its assessment of the student's understanding of the tutor's problem solving.

4.2. Scenario 2: Opportunistic Tutoring with a Discourse Management Network
Now we reconsider the same scenario assuming that only a discourse management network

controls the tutor. In this case no individualized lesson planning can be done without recourse to
mechanisms outside of the discourse management network such as an agenda or auxiliary planning
mechanism. Alternatively the DMN could be extended so that some states correspond to lesson

6'the available library of cases that the student can select from changes to include only those that the student should also be
able to solve at that tiLe.
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planning decisions that result in the selection of a curriculum plan from a plan library. But then states
now represent both lesson planning actions and discourse management actions, undercutting the
perspicuity of the DMN. Even with this extension the curriculum planning is not nearly so customized

as the blackboard tutor provides. S cannot interact with the DMN tutor T' to formulate a customized
curriculum that achieves his objectives while satisfying department requirements. T' is also less capable
of customizing individual lesson plans than T. Although the student can change the current topic with
T', he cannot interact with T' to draw up an intended sequence of topics or cases for a particular lesson.

Let us assume that the DMN tutor is used either as a problem solving monitor that tutors
opportunistically (like GUIDON) or as a Socratic question and answer tutor (like MENO-TUTOR). In
either case the tutor is not the primary source of instruction [1 ]; instead it assumes that the student is
somewhat familiar with the material already but his knowledge can be refined and is likely to have
misconceptions. Thus the tutor must be used with some auxiliary form of instruction such as a
workbook (like Anderson's LISP tutor [7]) or classroom instruction.

The DMN tutor is best suited to handle one particular class of tutorial strategy, either Socratic
question and answer or another opportunistic approach.7 Its ability to handle expository instruction is
limited and its inability to plan dialog hampers it once it leaves the stereotypical discourse situations for
which DMNs are best suited. When S gives the DMN tutor a program with multiple bugs it cannot plan
which bugs to address, which to ignore, and what order (and how) to discuss the bugs since these are not
local decisions (e.g., one bug may mask other more serious bugs or two similar bugs could be discussed " -

together as resulting from the same misconception). The DMN tutor also cannot plan a series of cases
along with the topics to discuss for each case to cover a particular set of topics. The ability to defer
discussing one topic now since a subsequent case will better address the same topic requires foresight
that the DMN does not have.

The DMN tutor does not allow the student as much freedom to express initiative as the blackboard-
based tutor. The student cannot interrupt the tutor's presentation with requests that may change
assumptions underlying the instructional plan currently being followed. Thus in the earlier examples
where the student interrupted the tutor and entered an exploratory mode, or requested a change in -
tutorial strategy, these degrees of flexibility are not readily supported in the DMN tutor. As before, any
specific example in the scenario could be handled by a special-purpose DMN but in general the
combinatorics prevent a single DMN from handling the possibility of these kinds of interruptions at any
time, for any tutorial situation. The blackboard-based tutor is better equipped for these interruptions
since it has an explicit modifiable plan representation and can apply knowledge about replanning at the
time the interruption occurs.

This discussion is not meant to imply that S cannot benefit from the DMN controlled tutor T', only

7Even though GUIDON can exhibit many different discourse strategies for presenting MYCIN roles or assessing the
student's knowledge of these, its overall tutorial strategy is opportunitic.

. . . . .. . . . . . . . . . . . .. ..... .. . . . .. . .. .. . . .. . . .. .. .. .. . . .. . . . . .. . . . . .. .. . . . . .. . .
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that T' is quite limited compared to the blackboard-based tutor T. Most previous work in intelligent
tutoring systems adopts an opportunistic tutoring framework similar to that of T', which can be well
supported by discourse management networks. Many successful tutors have been built in this
framework (e.g., GREATERP [7), WEST [1], WUSOR [91, and GUIDON [2])8 while tutors such as T
are still only hypothetical. The computational overhead in the blackboard architecture is also
undeniably greater than that of the simpler discourse management network. However, the point of these
scenarios is to illustrate that we can still build much more powerful tutors, encompassing both
opportunistic and highly customized expository instruction, and that research in planners and
architectures to support them, such as blackboards, is justifiable.

5. Summary
This paper compares the blackboard architecture to discourse management networks and concludes

that the blackboard architecture better supports dynamic instructional planning. This paper also argues
that dynamic instructional planning allows more flexible and effective instruction than tutors that have
no plan or only a pre-stored plan. To support these arguments the key architectural features of each
architecture were compared and discussed in terms of the support or limitations they provide for
dynamic instructional planning. A hypothetical scenario illustrating control by the two architectures
also points out differences in capabilities.

Since discourse management networks are not sufficient in themselves to support the full range of
behavior desirable of intelligent tutoring systems, especially the ability to customize lesson plans, to
generate globally coherent instruction, to select the best action based on multiple conflicting goals, and
to allow student initiative that may alter a tutor's current plan, research in blackboard-based dynamic
instructional planners is justified. It is also clear that such blackboard-based planners are not strictly
necessary to build opportunistic tutors that do not perform lesson or dialog planning and which limit
student initiative. In these cases, DMNs are sufficient and sophisticated tutors, such as GUIDON, can
and have been built with that architecture.

This paper has not addressed the planning knowledge or the kind of planning required to realize a
dynamic instructional planner such as the one described in the scenario above. The planning required is
an instance of a larger class of problems characterized by an environment that is

" Incomplete - since the tutor does not know the student's knowledge completely at any point,

" Uncertain - since what it does know it does not know with complete certainty,

" Dynamic - since the student's knowledge changes during and between tutorial sessions,

" Multi-agent - since the tutor and student cooperate to facilitate the student's learning,
and where

Thm tam all adopt an oppmustic tutoring strategy, even though WEST and WUSOR act a coache fr a sht
who is playing a gune while GUIDON and GREATERP ait audeaf in problem solving for pflicula cues.

...... ....- Ymum I/ mmwlh mm Illtwm mmm m mmtml lra mam tmlk m m-I



Is

Results of actions are uncertain - since the tutor cannot predict with certainty the results of
its actions.

To specify a blackboard architecture as preferable to one based on discourse management networks to
handle these kind of planning difficulties does not provide an ITS designer with a solution to the control
problem, although it is a step in this direction. Any kind of planner can be implemented in the
blackboard architecture. Exactly what planning techniques are best in this domain, how to implement a
practical dynamic instructional planner in the blackboard architecture, and the knowledge required for
such planners are some of the difficult issues that remain to be addressed in future research.
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